Musical notes and their frequencies.
Clicking on the frequency will get you a one minute OGG audio file with a
sine wave of that frequency. Except for the 440 Hz file which is two
minutes.
Peek level is 25 % of clip level.
Scientific | Midi | Helmholtz | Name | Feet | Frequency Hz |
λ (17.8 °C) | |
---|---|---|---|---|---|---|---|
Dec | Hex | ||||||
C₋₁ | 0 | 00 | Cˌˌˌ | Subsubcontra | 64 | 8.176 | 41.9 m |
C₀ | 12 | 0C | Cˌˌ | Subcontra | 32 | 16.352 | 20.9 m |
C₁ | 24 | 18 | Cˌ | Contra | 16 | 32.703 | 10.5 m |
C₂ | 36 | 24 | C | Great | 8 | 65.406 | 5.23 m |
C₃ | 48 | 30 | c | Small | 4 | 130.813 | 2.62 m |
C₄ | 60 | 3C | c′ | One-lined | 2 | 261.626 | 1.31 m |
C₅ | 72 | 48 | c″ | Two-lined | 1 | 523.251 | 654 mm |
C₆ | 84 | 54 | c′″ | Three-lined | ½ | 1046.502 | 327 mm |
C₇ | 96 | 60 | c″″ | Four-lined | ¼ | 2093.005 | 164 mm |
C₈ | 108 | 6C | c′″″ | Five-lined | ⅛ | 4186.009 | 82 mm |
C₉ | 120 | 78 | c″″″ | Six-lined | ⅟₁₆ | 8372.018 | 41 mm |
'Feet' is the height of an organ pipe with a slit at the bottom and a open top. These pipes are slightly shorter then a half wavelength. One foot is 304.8 mm. So a 16 Hz organ pipe is about 10 m tall.
The frequency ratio of two successive notes is 1 : ¹²√2 ≈ 1 : 1.059463094
Note | Octave | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
-1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
C | 8.176 | 16.352 | 32.703 | 65.406 | 130.81 | 261.63 | 523.25 | 1046.5 | 2093.0 | 4186.0 | 8372 | 16744 |
C♯ | 8.662 | 17.324 | 34.648 | 69.296 | 138.59 | 277.18 | 554.37 | 1108.7 | 2217.5 | 4434.9 | 8870 | 17740 |
D | 9.177 | 18.354 | 36.708 | 73.416 | 146.83 | 293.66 | 587.33 | 1174.7 | 2349.3 | 4698.6 | 9397 | 18794 |
D♯ | 9.723 | 19.445 | 38.891 | 77.782 | 155.56 | 311.13 | 622.25 | 1244.5 | 2489.0 | 4978.0 | 9956 | 19912 |
E | 10.301 | 20.602 | 41.203 | 82.407 | 164.81 | 329.63 | 659.26 | 1318.5 | 2637.0 | 5274.0 | 10548 | 21096 |
F | 10.913 | 21.827 | 43.654 | 87.307 | 174.61 | 349.23 | 698.46 | 1396.9 | 2793.8 | 5587.7 | 11175 | 22351 |
F♯ | 11.562 | 23.125 | 46.249 | 92.499 | 185.00 | 369.99 | 739.99 | 1480.0 | 2960.0 | 5919.9 | 11840 | 23680 |
G | 12.250 | 24.500 | 48.999 | 97.999 | 196.00 | 392.00 | 783.99 | 1568.0 | 3136.0 | 6271.9 | 12544 | 25088 |
G♯ | 12.978 | 25.957 | 51.913 | 103.826 | 207.65 | 415.30 | 830.61 | 1661.2 | 3322.4 | 6644.9 | 13290 | 26580 |
A | 13.750 | 27.500 | 55.000 | 110.000 | 220.00 | 440.00 | 880.00 | 1760.0 | 3520.0 | 7040.0 | 14080 | 28160 |
A♯ | 14.568 | 29.135 | 58.270 | 116.541 | 233.08 | 466.16 | 932.33 | 1864.7 | 3729.3 | 7458.6 | 14917 | 29834 |
B | 15.434 | 30.868 | 61.735 | 123.471 | 246.94 | 493.88 | 987.77 | 1975.5 | 3951.1 | 7902.1 | 15804 | 31608 |
F₃ is the F-Clef.
C₄ is the central C.
G₄ is the G-Clef.
A₄ is the 440 Hz tuning fork A.
A typical piano range is from A₀ (88 keys)
or C₁ (85 keys) to
C₈.
Midi note 0 is C₋₁,
midi note 127 is G₉.
Most telephone systems can cope with octaves 4 to 7 (D♯₄ to G♯₇). Some may
get a bit lower (G♯₃).
Most digital audio systems make it to roughly halfway octave 10 (E₁₀ or F♯₁₀).